lunes, 28 de abril de 2014

·        La unidad básica del organismo vivo es la célula.
·        Los efectos biológicos de la radiación derivan del año que ésta produce en la molécula de ADN, localizada en el núcleo celular.
·        La información del ADN es fundamental para controlar las funciones celulares (proliferación, diferenciación, etc.)
·        La información contenida en el ADN se transmite a las células hijas.
·        La radiación puede dañar el ADN de dos formas:
     ‾         Directa: depositando su energía en esta molécula.
     ‾         Indirecta: a través de radicales libres.
Desde que Röntgen descubrió que los rayos X permiten captar estructuras óseas, se ha desarrollado la tecnología necesaria para su uso en medicina. La radiología es la especialidad médica que emplea la radiografía como ayuda en el diagnóstico, en la práctica, el uso más extendido de los rayos X.
Los rayos X son especialmente útiles en la detección de enfermedades del esqueleto, aunque también se utilizan para diagnosticar enfermedades de los tejidos blandos, como la neumoníacáncer de pulmónedema pulmonar y abscesos.
En otros casos, el uso de rayos X tiene más limitaciones, como por ejemplo en la observación del cerebro o los músculos. Las alternativas en estos casos incluyen la tomografía axial computarizada, la resonancia magnética nuclear o los ultrasonidos.
Otras
Los rayos X pueden ser utilizados para explorar la estructura de la materia cristalina mediante experimentos de difracción de rayos X por ser su longitud de onda similar a la distancia entre los átomos de la red cristalina. La difracción de rayos X es una de las herramientas más útiles en el campo de la cristalografía.
También puede utilizarse para determinar defectos en componentes técnicos, como tuberías, turbinas, motores, paredes, vigas, y en general casi cualquier elemento estructural. Aprovechando la característica de absorción/transmisión de los Rayos X, si aplicamos una fuente de Rayos X a uno de estos elementos, y este es completamente perfecto, el patrón de absorción/transmisión, será el mismo a lo largo de todo el componente, pero si tenemos defectos, tales como poros, pérdidas de espesor, fisuras (no suelen ser fácilmente detectables), inclusiones de material tendremos un patrón desigual.

Esta posibilidad permite tratar con todo tipo de materiales, incluso con compuestos, remitiéndonos a las fórmulas que tratan el coeficiente de absorción másico. La única limitación reside en la densidad del material a examinar. Para materiales más densos que el plomo no vamos a tener transmisión.

Espectro continúo
El tubo de rayos X está constituido por dos electrodos (cátodo y ánodo), una fuente de electrones (cátodo caliente) y un blanco. Los electrones se aceleran mediante una diferencia de potencial entre el cátodo y el ánodo. La radiación es producida justo en la zona de impacto de los electrones y se emite en todas direcciones.
La energía adquirida por los electrones va a estar determinada por el voltaje aplicado entre los dos electrodos. Como la velocidad del electrón puede alcanzar velocidades de hasta (1/3)c debemos considerar efectos relativistas, de tal manera que, Los diferentes electrones no chocan con el blanco de igual manera, así que este puede ceder su energía en una o en varias colisiones, produciendo un espectro continuo. 
La energía del fotón emitido, por conservación de la energía y tomando los postulados de Planck, Donde K y K’ es la energía del electrón antes y después de la colisión respectivamente.
El punto de corte con el eje x de la gráfica de espectro continuo, es la longitud mínima que alcanza un fotón al ser acelerado a un voltaje determinado. Esto se puede explicar desde el punto de vista de que los electrones chocan y entregan toda su energía. 
La energía total emitida por segundo, es proporcional al área bajo la curva del espectro continuo, del número atómico (Z) del blanco y el número de electrones por segundo (i). 
Donde A es la constante de proporcionalidad y m una constante alrededor de 2.
Espectro característico

Cuando los electrones que son acelerados en el tubo de rayos X poseen cierta energía crítica, pueden pasar cerca de una sub-capa interna de los átomos que componen el blanco. Debido a la energía que recibe el electrón, este puede escapar del átomo, dejando al átomo en un estado supremamente excitado. Eventualmente, el átomo regresará a su estado de equilibrio emitiendo un conjunto de fotones de alta frecuencia, que corresponden al espectro de líneas de rayos X. Éste indiscutiblemente va a depender de la composición del material en el cual incide el haz de rayos X, para el molibdeno, la gráfica del espectro continuo muestra dos picos correspondientes a la serie K del espectro de líneas, estas están superpuestas con el espectro continuo.
La intensidad de cualquier línea depende de la diferencia del voltaje aplicado (V) y el voltaje necesario para la excitación (V’) a la correspondiente línea.
Donde n y B son constantes, e i es el número de electrones por unidad de tiempo.

(1/3)cPara la difracción de rayos X, la serie K del material es la que usualmente se utiliza. Debido a que los experimentos usando esta técnica requieren luz monocromática, los electrones que son acelerados en el tubo de rayos X deben poseer energías por encima de 30 keV. Esto permite que el ancho de la línea K utilizada sea muy angosto (del orden de 0.001 Å). La relación entre la longitud de cualquier línea en particular y el número atómico del átomo está dada por la Ley de Moseley.
La manera en la que la radiación afecta a la salud depende del tamaño de la dosis de esta. La exposición a las dosis bajas de rayos X a las que el ser humano se expone diariamente no son perjudiciales. En cambio, sí se sabe que la exposición a cantidades masivas puede producir daños graves. Por lo tanto, es aconsejable no exponerse a más radiación ionizante que la necesaria.

La exposición a cantidades altas de rayos X puede producir efectos tales como quemaduras en la piel, caída del cabello, defectos de nacimiento, cáncer, retraso mental y la muerte. La dosis determina si un efecto se manifiesta y con qué severidad. La manifestación de efectos como quemaduras de la piel, caída del cabello, esterilidadnáuseas y cataratas, requiere que se exponga a una dosis mínima (la dosis umbral). Si se aumenta la dosis por encima de la dosis umbral el efecto es más grave. En grupos de personas expuestas a dosis bajas de radiación se ha observado un aumento de la presión psicológica. También se ha documentado alteración de las facultades mentales (síndrome del sistema nervioso central) en personas expuestas a miles de rads de radiación ionizante.
MEDIDA POR SISTEMA ENERGIA DISPERSIVA
• Recolectan todos los fotones de rayos X simultáneamente en el detector.
• Cada fotón genera un pulso eléctrico con una amplitud que es proporcional a la energía de la radiación X recibida.
• Estos pulsos son amplificados electrónicamente y analizados con un analizador multicanal.
• Este sistema tiene la ventaja de poder medir la radiación procedente de todos los elementos presentes simultáneamente.
• Se Utilizan detectores de ionización de gases, contadores de centelleo o semiconductores.
DETECTORES DE RAYOS X
Existen varios sistemas de detección para rayos X. EL primer detector usado para este propósito fue la película fotográfica, preparadas con una emulsión apropiada para la longitud de onda de los rayos X. La sensibilidad de la película es determinada por el coeficiente de absorción másico y es restringida a un rango de líneas espectrales. La desventaja que presentan estas películas es un margen dinámico muy limitado y el largo tiempo y manipulaciones que se necesitan para revelarlas, por lo que han caído en desuso.

En las últimas décadas del siglo XX se empezaron a desarrollar nuevos detectores bidimensionales capaces de generar directamente una imagen digitalizada. Entre estos se cuentan las «placas de imagen» (image plates), recubiertas de un material fosforescente, donde los electrones incrementan su energía al absorber los rayos X difractados y son atrapados en este nivel en centros de color. Los electrones liberan la energía al iluminarse la placa con luz láser, emitiendo luz con intensidad proporcional a la de los rayos X incidentes en la placa.
Estos detectores son un orden de magnitud más sensible que la película fotográfica y poseen un margen dinámico superior en varios órdenes de magnitud. Otro tipo de detector bidimensional digital muy utilizado consiste en una placa fosforescente acoplada a una cámara CCD. En los años 2000 se empezaron a utilizar fotodiodos alineados formando una placa, denominados PAD (Pixel Array Detectors).


Los rayos X se pueden observar cuando un haz de electrones muy energéticos (del orden de 1 keV) se desacelera al chocar con un blanco metálico. Según la mecánica clásica, una carga acelerada emite radiación electromagnética, de este modo, el choque produce un espectro continuo de rayos X a partir de cierta longitud de onda mínima dependiente de la energía de los electrones. Este tipo de radiación se denomina Bremsstrahlung, o ‘radiación de frenado’. Además, los átomos del material metálico emiten también rayos X monocromáticos, lo que se conoce como línea de emisión característica del material. Otra fuente de rayos X es la radiación sincrotrón emitida en aceleradores de partículas.
Para la producción de rayos X en laboratorios, hospitales, etc. se usan los tubos de rayos X, que pueden ser de dos clases: tubos con filamento o tubos con gas


El tubo con filamento es un tubo de vidrio al vacío en el cual se encuentran dos electrodos en sus extremos. El cátodo es un filamento de tungsteno y el ánodo es un bloque de metal con una línea característica de emisión de la energía deseada. Los electrones generados en el cátodo son enfocados hacia un punto en el blanco (que por lo general posee una inclinación de 45°) y los rayos X son generados como producto de la colisión. El total de la radiación que se consigue equivale al 1% de la energía emitida; el resto son electrones y energía térmica, por lo cual el ánodo debe estar refrigerado para evitar el sobrecalentamiento de la estructura. A veces, el ánodo se monta sobre un motor rotatorio; al girar continuamente el calentamiento se reparte por toda la superficie del ánodo y se puede operar a mayor potencia. En este caso el dispositivo se conoce como «ánodo rotatorio». Finalmente, el tubo de rayos X posee una ventana transparente a los rayos X, elaborada en berilio, aluminio o mica.
• Las técnicas basadas en la medida de Radiación X es independiente del estado de combinación del elemento al ser generada por los electrones internos, (los electrones externos prácticamente no intervienen) y por tanto el espectro de rayos X es idéntico si el átomo está como tal, o en forma iónica combinado formando cualquier molécula.
• Al mismo tiempo la materia que emite la radiación permanece inalterada, proporcionándole otra característica de gran interés como es el carácter no destructivo.


La historia de los rayos X comienza con los experimentos del científico británico William Crookes, que investigó en el siglo XIX los efectos de ciertos gases al aplicarles descargas de energía. Estos experimentos se desarrollaban en un tubo vacío, y electrodos para generar corrientes de alto voltaje. Él lo llamó tubo de Crookes. Este tubo, al estar cerca de placas fotográficas, generaba en las mismas algunas imágenes borrosas. Pese al descubrimiento, Nikola Tesla, en 1887, comenzó a estudiar este efecto creado por medio de los tubos de Crookes. Una de las consecuencias de su investigación fue advertir a la comunidad científica el peligro para los organismos biológicos que supone la exposición a estas radiaciones

La denominación rayos X designa a una radiación electromagnética, invisible, capaz de atravesar cuerpos opacos y de imprimir las películas fotográficas. Los actuales sistemas digitales permiten la obtención y visualización de la imagen radiográfica directamente en una computadora (ordenador) sin necesidad de imprimirla. La longitud de onda está entre 10 a 0,01 nanómetros, correspondiendo a frecuencias en el rango de 30 a 30000 PHz (de 50 a 5000 veces la frecuencia de la luz visible).
Son una forma de radiación electromagnética, tal como la luz visible.
Una máquina de rayos X envía partículas de estos rayos a través del cuerpo. Las imágenes se registran en una computadora o en una película.
Las estructuras que son densas, como los huesos, bloquearán la mayoría de las partículas de rayos X y aparecerán de color blanco. 
El metal y los medios de contraste (tintes especiales utilizados para resaltar áreas del cuerpo) también aparecerán de color blanco. 

Las estructuras que contienen aire se verán negras, y los músculos, la grasa y los líquidos aparecerán como sombras de color gris.

martes, 15 de abril de 2014

Forma en que se realiza el examen El examen se realiza en la sala de radiología de un hospital o en un consultorio médico. La forma en que usted deba posicionarse dependerá del tipo de radiografía que se esté haciendo. Se pueden necesitar varias tomas radiográfícas. Es necesario que usted permanezca quieto cuando se esté tomando una radiografía, ya que el movimiento puede provocar imágenes borrosas. Puede que le soliciten que contenga la respiración o que no se mueva durante uno o dos segundos cuando se esté tomando la imagen.
Son una forma de radiación electromagnética, tal como la luz visible. Una máquina de rayos X envía partículas de estos rayos a través del cuerpo. Las imágenes se registran en una computadora o en una película. Las estructuras que son densas, como los huesos, bloquearán la mayoría de las partículas de rayos X y aparecerán de color blanco. El metal y los medios de contraste (tintes especiales utilizados para resaltar áreas del cuerpo) también aparecerán de color blanco. Las estructuras que contienen aire se verán negras, y los músculos, la grasa y los líquidos aparecerán como sombras de color gris.